ENGINEERING ## **BASIC THEORY** # Thermodynamics (Basic heat technology) | Isothermal condition/ Pv = constant phase | P
v | pressure
volume
adiabatic index/ | Pa
m³ | | |---|----------------|--|----------|--| | | κ | adiabatic indev/ | | | | Adiabatic condition/ Pv^{κ} = constant phase | | exponent | 1 | | | Polytropic condition/ PV' = constant phase | n | polytropic index/
exponent | 1 | | | Equation of condition $\frac{PV}{T} = \text{constant}$ | Т | absolute temperature | к | | | Ideal processes | | | | | | The Otto-process $\eta_0 = 1 - \frac{1}{\epsilon_n^{\kappa - 1}}$ | η₀
€n | ideal thermodynamic
efficiency
nominal degree of
compression | 1 | | | Nominal degree of compression $\epsilon_{n} = \frac{v_{1}}{v_{2}}$ | | cylinder-volume
above piston in
lower dead point
cylinder-volume
above piston in
upper dead point | m³
m³ | | | Diesel process $\eta_0 = 1 - \frac{1}{\epsilon_n^{K-1}} \cdot \frac{\rho^{K-1}}{\kappa (\rho - 1)}$ | ρ | volume condition during combustion | 1 | | | Adiabatic index $\kappa = \frac{c_p}{c_v}$ | C _p | specific heat
capacity at
constant pressure
specific heat
capacity at | J/kg ⋅ K | | | | | constant volume | J/kg⋅K | | | | V | | | | |-----------------------------------|--|----------------|---------------------------------------|-----------| | Volume condition | $\Delta V = \frac{V_3}{V_2}$ | ΔV | volume condition | | | during combustion | - 2 | | during combustion | 1 | | | | V_3 | cylinder-volume | | | | | | above piston at the end of combustion | m^3 | | | | | end of combustion | m | | | | | | | | Paul processes | | | | | | Real processes | | | | | | Pressure of | $p_k = p_{s1} \epsilon^n$ | Dk | pressure of | | | compression | 5/0 (5) * | 18.00 | compression | Pa | | | | p_{s1} | pressure at start | | | | | | of compression | Pa | | | | € | • | | | | | | compression | 1 | | | | n | politrop index | 1 | | 0 | | | | | | Compression temperature | $T_k = T_{s_1} \epsilon^{n-1}$ | T _k | compression | | | temperature | | T . | temperature at | K | | | | / s1 | beginning of | | | | | | compression | K | | | | | , , , , , , , , , , , , , , , , , , , | | | Efficiency and fuel | | | | | | consumption | | | | | | Ideal thomas dimenia | n _ W ₀ | | | | | Ideal thermodynamic
efficiency | $\eta_o = \frac{w_o}{a_*}$ | | ideal thermodynamic | | | emciency | • | | efficiency
thermo work | 1 | | | | | supplied heat | J | | | | 41 | supplied fleat | J | | Indicated | $\eta_i = \frac{W_i}{a_t} = \frac{P_i}{\dot{a}_t} = \frac{P_i}{\dot{m}_B h_g} = \frac{1}{b_i h_g}$ | | | | | thermodynamic | a_1 a_2 a_3 a_4 a_5 a_6 a_6 | | indicated
thermodynamic | | | efficiency | | | efficiency | 1 | | • | | | work developed in | * | | | | | cylinder (indicated | | | | | | work) | J | | | | | supplied heat | J | | | | | indicated effect | W | | | | | supplied energy
per time unit | | | | | | fuel consumption | J
kg/s | | | | | upper fuel value | J/kg | | | | | indicated specific | ung | | | | | fuel consumption | kg/J | | | | | | | | | | | y | | | | $\eta_i = \eta_o \eta_g$ | | degree of | | | | | | goodness | | | | | | (inner efficiency) | 1 | | Effective thermodynamic efficiency | $\eta_{e} = \frac{W_{e}}{a_{t}} = \frac{P_{e}}{\dot{a}_{t}} = \frac{P_{e}}{\dot{m}_{B}h_{g}} = \frac{1}{b_{e}h_{g}}$ | W _e | effective thermodynamic efficiency work supplied to motor shaft/axis (axis work) shaft/axis effect effective specific fuel consumption | 1
J
W
kg/J | |--|--|----------------------------------|--|---------------------| | | $\eta_{\rm e} = \eta_{\rm i} \eta_{\rm m}$ | η_{m} | mechanic efficiency | 1 | | Degree of goodness | $ \eta_{g} = \frac{w_{i}}{w_{o}} $ | | degree of
goodness
thermodynamic
work | 1
J | | Mechanical efficiency of engine | $ \eta_{\rm m} = \frac{w_{\rm e}}{w_{\rm i}} = \frac{P_{\rm e}}{P_{\rm i}} $ | η_{m} | mechanical efficiency of engine | 1 | | Propeller shaft mechanical efficiency | $\eta_{a} = \frac{w_{p}}{w_{e}} = \frac{\rho_{p}}{\rho_{e}}$ | W _p
W _e | propeller shaft
mechanical
efficiency
propeller work
shaft work
propeller effect | 1
J
J
W | | Fuel consumption | $b_i = \frac{\dot{m}_B}{\rho_i}$ | bi | indicated specific fuel consumption | kg/J | | | $b_{e} = \frac{\dot{m}_{B}}{\rho_{e}}$ | be | effective specific fuel consumption | kg/J | | Effect and mean pressu | | | | | | Stroke volume per
cylinder (displacement
per cylinder) | $V_{h} = \frac{\pi D^2}{4} S$ | | stroke volume per
cylinder
diameter of
cylinder (bore) | m ³ | | | | S | stroke | m
m | | Indicated effect of a two-stroke engine | $P_i = i W_i n_a = i V_h \rho_{mi} n$ | P. indicated effect | W | |---|--|--|-----------------| | two-stroke engine | | i number of cylinders | 1 | | | | W _i indicated work | J | | | | n _a number of work | | | | | processes per | | | | | second and per | | | | | cylinder | s-1 | | | | p _{mi} indicated mean | 3 | | | | | - | | | | pressure | Pa | | | | n frequency of | | | | | rotation | s ⁻¹ | | | | | | | | | $n_a = n$ for a two-stroke | | | | | engine | | | | | | | | Indicated effect of a | $P_i = i W_i n_a = i V_h p_{mi} \frac{n}{2}$ | $n_a = {}^{n}l_2$ for a four-stroke | | | four-stroke engine | 1 1 3 11 1111 2 | engine | | | • | | engine | | | Tariffe and a financial | w_i | | | | Indicated mean | $\rho_{mi} = \frac{w_i}{v_b}$ | p _{mi} indicated mean | | | pressure | h | pressure | Pa | | | | process | | | | | | | | | $p_{\text{mi}} = \frac{\text{area of } pV\text{-diagram in mm}^2}{1200 min min min min min min min min min min$ | (scale factor of pressure shaft) | | | | length of pV-diagram in mm | (course reactor of procedure critativ) | | | | | | | | | | | | | Shaft effect of two- | $P_e = i W_e n_a = i V_h \rho_{me} n$ | Pe shaft effect | W | | stroke engine | 0 0 0 11.1110 | We shaft work | J | | • | | P _{me} effective mean | J | | | | | - | | | | pressure | Pa | | | | $n_a = n$ for two-stroke engin | е | | | | • | | | | | | | | | $P_{e} = P_{i} \eta_{m}$ | $\eta_{\rm m}$ mechanic efficiency | | | | • 1 111 | of engine | 1 | | | | | | | Shaft effect of four- | P = 1W = = 1V = " | | | | | $P_e = i W_e n_a = i V_h p_{me} \frac{n}{2}$ | $n_a = {}^nI_2$ for four-stroke engi | ne | | stroke engine | $P_{e} = P_{i} \eta_{m}$ | | | | | . e - ' i '/m | | | | | | | | | Equation for effective | $p_{\rm me} = \frac{\rho_{\rm i} h_{\rm g}}{\mu_{\rm m} \eta_{\rm i} \gamma_{\rm f}} \frac{\eta_{\rm m} \eta_{\rm i} \gamma_{\rm f}}{\eta_{\rm m} \eta_{\rm i} \gamma_{\rm f}}$ | - | P _{me} effective mean | | |------------------------|---|---------------------------|---|-------------------| | mean pressure | (L/B), \lambda_t | | pressure | Pa | | | | | ρ density of dry air | 100 | | | | | outside engine | kg/m ³ | | | | | h _g oil's heating value | J/kg | | | | | (L/B), reaction equiva- | | | | | | lent mixture of air | 4000 | | | | | and fuel | kg/kg | | | | | η_i indicated thermo | | | | | | efficiency | 1 | | | | | γ _f degree of air-filling | | | | | | of cylinder | 1 | | | | | λ ₁ air factor related to | | | | | | air filling of cylinder | 1 | | | | | | | | | | | | | | | $p_{\text{me}} = \eta_{\text{m}} p_{\text{mi}}$ | | p _{mi} indicated mean | | | | | | pressure | Pa | | | | | | | | | - Pe Pe | | | | | | $T = \frac{P_e}{\omega} = \frac{P_e}{2\pi n}$ | | | | | T | | | | | | Torque moment | | in a all more allows to a | T torque moment | Nm | | | | | ω angle velocity | rad/s | | | | | | | | Mean piston velocity | $c_{\rm ms} = 2 S n$ | | c _{ms} mean piston | m/s | | | -ms · | | velocity | | | | | | S length of stroke | m | | | | | • | COMBUSTION | | | | | | Theoretic air demand | $v_{Lr} = \frac{22.4}{0.21} \left(\frac{c}{12} + \frac{h}{4} + \frac{3}{3} \right)$ | | V _{Lr} theoretic need | Nm³ a | | rneoretic air demand | Lr 0.21 12 4 3 | 2' | for air | kg fue | | | | | ioi ali | ng ruo | | | | | Nm ³ – normal cubic | | | | | | meter - not SI-unit | | | | | | | | | | | | c mass of carbon | kg | | | | | h mass of hydrogen | kg | | | | | s mass of sulfur | kg | | | (1 /R) = 1 202 22.4 , c | , h , s , | (L/B) _f theoretic need | kg air | | | $(L/B)_r = 1.293 \cdot \frac{22.4}{0.21} \left(\frac{c}{12} \right)$ | + + + 32) | of air | kg fue | | | | | or on | | | | | | | | | | | | | ko air | | Real air usage | $L/B = \lambda (L/B)_r$ | | L/B real air usage | kg air | | Real air usage | $L/B = \lambda (L/B)_r$ | | 7.4 | kg air | | Real air usage | $L/B = \lambda \left(L/B \right)_{\rm f}$ | | L/B real air usage λ air factor related to air usage | kg air
kg fue | | Specific air usage | $I_{\mathbf{e}} = b_{\mathbf{e}} \lambda (L/B)_{\mathbf{r}}$ | l _e
b _e | specific air usage
specific fuel usage | kg air/J
kg/J | |--------------------------------------|--|----------------------------------|---|-------------------| | | | | | | | Engine's air usage | $\dot{m}_{L} = P_{e}I_{e} = P_{e}b_{e}\lambda (L/B)_{r}$ | | air usage of engine shaft effect | kg/s
W | | | $\dot{m}_{L} = \dot{m}_{B} \lambda (L/B)_{r}$ | ḿв | fuel usage | kg/s | | | $\dot{m}_{L} = \gamma_{L} i V_{h} \rho_{i} n_{a}$ | 24 | degree of air usage | 1 | | | $m_{\perp} = \gamma_{\perp} / V_{h} \rho_{i} n_{a}$ | γL
Vh | number of cylinders displacement per | 1 | | | | | cylinder | m ³ | | | | Pi
na | air density outside
number of work | kg/m ³ | | | | | processes per
second | s ⁻¹ | | Exhaust gases | V 22.4 (c/12) · 100 | Vcoz | volume % CO ₂ | | | Exilaust gases | $V_{\text{CO}_2} = \frac{22.4 \ (c/12) \cdot 100}{22.4 \ (c/12) + v_{\text{Lr}} (\lambda - 0.21)}$ | V CO2 | (efficiency CO ₂) in | | | | | С | dry exhaust
mass of carbon | % | | | | C | mass of Carbon | kg | | | | | | | | | $V_{O_2} = \frac{0.21 v_{L_r} (\lambda - 1) \cdot 100}{22.4 (c/12) + v_{L_r} (\lambda - 0.21)}$ | | W 1984 | | | | $22.4 (c/12) + v_{Lr} (\lambda - 0.21)$ | V_{02} | volume % O ₂
(efficiency O ₂) in
dry exhaust | % | | | $V_{N_2} = \frac{0.79 v_{Lr} \lambda \cdot 100}{22.4 (c/12) + v_{Lr} (\lambda - 0.21)}$ | | | | | | v_2 22.4 (c/12) + v_{Lr} ($\lambda - 0.21$) | | | | | | | V_{N_2} | volume % N ₂
(efficiency N ₂) in | | | | | | dry exhaust | % | | | | | | | | Air factor | $\lambda = \frac{22.4 (c/12) (100 - V_{\text{CO}_2})}{V_{\text{CO}_2} V_{\text{Lr}}} + 0.21$ | λ | air factor related to | | | | V _{CO2} V _{Lr} | | air usage | 1 | | | | | | | | | | | | | | GAS CHANGING IN
TWO-STROKE ENGINE | s | | | | | Degree of air usage | $\gamma_{L} = \frac{m_{L}}{m_{e}}$ | γL | degree of air usage | 1 | | g. 55 57 an asage | mLt 21 | m_{L} | quantity of air used | kg | | | | m _{Lt} | theoretic quantity of air filling | kg | | | | P | density of
suctioned air | kg/m³ | | | $m_{1} = \rho_i V_h$ | V_{h} | displacement | 200 | | | | | (stroke volume) | m ³ | | | | | | | | | | | | | | Degree of air filling | $\gamma_{\rm f} = \frac{m_{\rm Lf}}{m_{\rm Lt}} = \gamma_{\rm L} \ (1 - \gamma_{\rm k})$ | γι
mu | degree of air filling
quantity of air filled/
suctioned | 1
kg | |-----------------------------------|--|------------------------|---|---------| | | | γк | degree of short circuit | 1 | | Degree of scavenging air | $\gamma_{R} = \frac{m_{Lf}}{(m_{Lf} + m_{R})}$ | γR | degree of scavenging air | 1 | | scaveriging an | | m_{R} | quantity of residual
gasses | kg | | Air factor related to air filling | $\lambda_f = \lambda (1 - \gamma_k)$ | λ_{f} | air factor related to air filling | 1 | | to an immig | | λ | air factor related
to air usage | 1 | | Degree of short circuit | $\gamma_{\mathbf{k}} = \frac{m_{\mathbf{L}\mathbf{k}}}{m_{\mathbf{L}}}$ | γк | degree of short | 1 | | | | <i>m</i> _{LK} | loss owing to short circuit + expelling | kg | | | $m_{L} = m_{Lf} + m_{Lk}$ | <i>m</i> ∟ | quantity of air usage | kg | #### **ENGINE DYNAMICS** Piston acceleration in top and bottom dead centers ### Crank-operation | Connecting rod ratio | $\lambda = \frac{R}{L}$ | |----------------------|--| | Length of stroke | $s = R \left(1 - \cos \alpha + \frac{\lambda}{2} \sin^2 \alpha\right)$ | | Piston velocity | $c = R \omega \left(\sin \alpha + \frac{\lambda}{2} \sin 2\alpha \right)$ | | Piston acceleration | $a = R\omega^2 (\cos \alpha + \lambda \cos 2\alpha)$ | $a_{TD} = R\omega^2 (1 + \lambda)$ $a_{\rm BD} = -R\omega^2 (1 - \lambda)$ connecting rod ratio crank radius length of connecting rod 1 R m m length of stroke m angle of crank rad piston velocity angle velocity of crank m/s rad/s m/s2 piston acceleration a_{TD} piston acceleration in top dead center m/s2 a_{BD} piston acceleration in bottom dead center m/s² | Oscillating force | $F_{\rm o} = (m_{\rm s} + m_{\rm vo}) a$ | ⁶ € | | oscillating force
mass of whole
piston | N
kg | |-----------------------|--|-----------------|-----------------|---|---------| | | | e l | m _{vo} | oscillating part of
mass of connecting
rod | kg | | Gas force | $F_{g} = \frac{\pi \sigma^2}{4} \rho$ | n F | Fg
d
p | gas force
piston diameter
difference of
pressure on upper
and lower side of | N
m | | | 5-515 | | _ | piston force | Pa
N | | Piston force | $F_p = F_g + F_o$ | 4 | Pp | pistorriorce | | | Normal force | $F_n = F_s \operatorname{tg} \beta$ | | F_n β | normal force angle of | N . | | | | | | connecting rod | rad | | Connecting rod force | $F_{v} = \frac{F_{p}}{\cos \beta}$ | | F _v | connecting rod force | N | | Tangential force | $F_t = F_v \sin(\alpha + \beta)$ | | F_{t} | tangential force | N | | | $F_{t} = \frac{F_{p} \sin{(\alpha + \beta)}}{\cos{\beta}}$ | | | | | | Work per revolution | $W_i = F_{tm} 2 \pi R$ | | | work
mean tangential | J | | | | | | force | N | | Mean indicated torque | $T_i = F_{tm}R$ | | Ti | torque | N·m | | Radial force | $F_d = F_v \cos{(\alpha + \beta)}$ | | F_d | radial force | N | | Rotating force | $F_r = m_r R \omega^2$ | | Fr
mr | rotating force
mass of crank
journals/pin +
mass of counter-
weights related
to crank radius +
rotating part of
connecting rod | N | | | | | | mass m _{vr} | kg | | | | | | | | #### Mass forces in a one-cylinder engine | Rotating mass forces | $F_{\rm r} = m_{\rm vr} R \omega^2 + m_{\rm t} R \omega^2 + 2 m_{\rm sk} R_{\rm t} \omega^2$ | Fr | rotating mass | | |-------------------------|--|-----------------|--|--------| | | | | forces | N | | | | m _{vr} | rotating mass part | l | | | 11 - m. m m. | | of connecting rod | kg | | | 11.7 | R | crank radius | m | | | 11 15 | ω_{m_t} | angle of velocity
mass of the | rad/s | | | ~ "M | m _{sk} | crankshaft pin
mass of the crank | kg | | | J/\$#5- | R. | counterweight the radius of the | kg | | | $F_r = m_r R \omega^2$ | | center of gravity | | | | F,=M, N W | | of the counterweight | m | | | | mr | mass of crankshaft/
journal pin +
mass of counter- | | | | R. | | weights related
to crank radius + | | | | $m_r = m_{vr} + m_t + 2m_{sk} \frac{\kappa_t}{R}$ | | rotating part of | | | | | | connecting rod | | | | | | mass m _{vr} | kg | | Oscillating mass forces | $F_0 = m_0 R \omega^2 (\cos \alpha + \lambda \cos 2\alpha)$ | Fo | oscillating mass forces | N | | | | m. | total oscillating | | | | | ***** | mass | kg | | | | α | angle of crank | rad | | | | λ | connecting rod ratio | 1 | | | | | | | | | $m_{o} = m_{p} + m_{vo}$ | | mass of complete
piston | kg | | | | m_{vo} | oscillating mass of | | | | | | connecting rod | kg | | | $F_{01} = m_0 R \omega^2 \cos \alpha$ | F ₀₁ | mass forces of first | 120 | | | The state of s | | order | N | | | $F_{02} = \lambda m_0 R \omega^2 \cos 2\alpha$ | F ₀₂ | mass forces of | | | | 0. | . 02 | second order | N | | | | | | 3.3.70 | F_k counter weights' centrifugal force m_k mass per counter weight R_k point of gravity m_r rotating mass m_o oscillating mass radius kg m kg $F_{k} = F_{r} + \frac{1}{2} F_{01 \text{maximum}}$ $2m_k R_k \omega^2 = m_r R \omega^2 + \frac{1}{2} m_o R \omega^2$ Centrifugal force of counter weights Two counter weights #### **Torque swings** | Swing f | requency | |---------|----------| |---------|----------| $$f_{n1} = \frac{1}{2\pi} \sqrt{\frac{G I_p}{L} \cdot \frac{I_1 + I_2}{I_1 \cdot I_2}}$$ Plane pressure in bearings $$\rho = \frac{\frac{\pi}{4} \sigma_v^2 \cdot \rho}{D_v L_{ve}}$$ m tracks) #### PROPULSION IN WATER #### Effect needed Propulsion effect (towing effect) $$P_{\rm E} = F_{\rm T} v$$ Pushing power/force $$F_p = F_T + F_M$$ Propeller's delivered effect (pushing effect) $$P_s = F_s v_r$$ current coefficient = $$\frac{v - v_r}{v}$$ | P _E
F _T | | W | |----------------------------------|---------------------------------------|-----| | 5.5 | resistance | N | | v | ship velocity | m/s | | F _p
F _M | | N | | | resistance from
propeller | N | | Ps | | w | | $V_{\rm r}$ | propeller's velocity
in propulsion | | | | direction related to | | | | water | m/s | | $v_{\rm r}$ | relative velocity of | | Current coefficient 0.20 - 0.25 propeller | Propeller efficiency | $ \eta_{p} = \frac{\rho_{s}}{\rho_{p}} $ | | propeller efficiency
effect supplied to
propeller | 1
W | |-----------------------------|--|---|---|--| | Propulsion efficiency | $ \eta_{f} = \frac{P_{E}}{P_{p}} = \frac{P_{E}}{P_{s}} \frac{P_{s}}{P_{p}} = \eta_{sg} \eta_{p} $ | η ₁
η ₅₉ | propulsion
efficiency
shape of hull
(degree of | 1 | | | $ \eta_{sg} = \frac{P_E}{\rho_s} $ | | goodness of hull) | 1 | | Shaft mechanical efficiency | $ \eta_{\mathbf{a}} = \frac{P_{\mathbf{p}}}{P_{\mathbf{e}}} $ | η _a
<i>P</i> _e | shaft mechanical
efficiency
shaft effect from
engine | 1
W | | Ship's theoretical speed | $v_{t} = s n_{p}$ | Vt
S
ηρ | ship's theoretical
velocity
propeller thread/
rise
propeller rotating | m/s
m | | Slip | $slip = \frac{(v_t - v) \ 100}{v_t}$ | | frequency | 5 | | | $P_{\theta} = P_{\theta}^{*} \left(\frac{n}{n^{*}}\right)^{3} = P_{\theta}^{*} \left(\frac{v}{v^{*}}\right)^{3}$ | | at normal operation | W
s ⁻¹
s ⁻¹
m/s | | | $P_{\bullet} = \Delta^{\frac{2}{3}} \frac{v^3}{A}$ | Δ
A | displacement
admiralty constant | ton | #### **HEAT TRANSFER AND HEAT LOAD** **Heat flow** heat flow J/s = W heat transfer $W/(m^2 \cdot K)$ coefficient area to which heat m^2 is transferred ΔT temperature difference between gas and surface K material Heat flux $$\dot{q} = \frac{\dot{\alpha}}{A} = \alpha_g \, \Delta T$$ heat flux (density of heat flow) Eichelberg's formula $$\alpha_{\rm g} = 2.1 \sqrt{\rho T} \sqrt[3]{c_{\rm ms}}$$ heat transfer coefficient kcal/m²h Eichelberg's formula is based on the technical system. absolute gas kp/cm² pressure gas temperature cms mean piston velocity m/s One-dimensional transfer $$\dot{q}_{\rm m} = \frac{\lambda}{\delta} \ (T_{\rm vm} - T_{\rm vk})$$ W/m² qm mean heat flux $W/(m^2 \cdot K)$ thermo conductivity material thickness T_{vm} mean wall temperature on gas side Tvk mean wall temperature on refrigerant side K $\dot{q}_{\rm m} = \alpha_{\rm k} \left(T_{\rm vk} - T_{\rm k} \right)$ ak heat transfer $W/(m^3 \cdot K)$ coefficient T_k refrigerant temperature K Heat transfer through wall $$\dot{q}_{\rm m} = k \left(T_{\rm me} - T_{\rm k} \right)$$ heat transfer coefficient $W/(m^3 \cdot K)$ Tme mean effective gas temperature K Heat transfer coefficient $$\frac{1}{k} = \frac{1}{\alpha_{gm}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{k}}$$ α_k heat transfer coefficient gassurface $W/(m^2 \cdot K)$ α_k heat transfer coefficient materialrefrigerant $W/(m^2 \cdot K)$ Any boiler scale shall be added $\frac{\delta_{ks}}{\lambda_{ks}}$. #### **AUXILIARY SYSTEMS** #### Cooling water system Necessary quantity of cooling water $$\dot{v} = \frac{\sum r_k}{\Delta \tau_{\text{tot}} \ c \ \rho \ \eta_e}$$ $$\dot{v} = \frac{2 r_{\rm k}}{\Delta \tau_{\rm tot} \ c \ \rho \ \eta_{\rm e}}$$ $$\dot{v} = \frac{\sum r_k \, \dot{m}_B \, h}{\Delta T_{\text{tot}} \, c \rho P_e}$$ $$\dot{V} = \dot{v} P_{e}$$ $$\Delta T_{\text{tot}}$$ temperature difference K 1 $$\eta_{\rm e}$$ effective thermo efficiency $$\dot{m}_{\rm B}$$ fuel consumption kg/s h calorific value J/kg #### Freshwater coolers | 1.1. | | a | ow | |------|-----|------|-----| | П | ?AI | - 11 | DW. | $$\dot{Q} = r_{kf} \dot{m}_B h = r_{kf} h b_e P_e = r_{kf} \frac{P_e}{\eta_e}$$ | ΔT | logarithmic mean | |------------|------------------| | | temperature | | | difference | $$\Delta T_1$$ temperature difference K $$\Delta T_2$$ temperature difference K #### **Lubricating coolers** $$\dot{Q} = r_{ks} \dot{m}_B h = r_{ks} h b_e P_e = r_{ks} \frac{P_e}{\eta_e}$$ $$\dot{Q}$$ heat flow J/s = W transferred heat quantity in lubri- $$\rho = \frac{\Delta \rho \, \dot{v}}{\eta} = \frac{\Delta \rho \, \dot{v} \, \rho_e}{\eta}$$ $\dot{Q} = k A \Delta T$ $$P$$ effect needed W Δp increased pressure in pump Pa