ENGINEERING

BASIC THEORY

Thermodynamics (Basic heat technology)

Isothermal condition/ Pv = constant phase	P v	pressure volume adiabatic index/	Pa m³	
	κ	adiabatic indev/		
Adiabatic condition/ Pv^{κ} = constant phase		exponent	1	
Polytropic condition/ PV' = constant phase	n	polytropic index/ exponent	1	
Equation of condition $\frac{PV}{T} = \text{constant}$	Т	absolute temperature	к	
Ideal processes				
The Otto-process $\eta_0 = 1 - \frac{1}{\epsilon_n^{\kappa - 1}}$	η₀ €n	ideal thermodynamic efficiency nominal degree of compression	1	
Nominal degree of compression $\epsilon_{n} = \frac{v_{1}}{v_{2}}$		cylinder-volume above piston in lower dead point cylinder-volume above piston in upper dead point	m³ m³	
Diesel process $\eta_0 = 1 - \frac{1}{\epsilon_n^{K-1}} \cdot \frac{\rho^{K-1}}{\kappa (\rho - 1)}$	ρ	volume condition during combustion	1	
Adiabatic index $\kappa = \frac{c_p}{c_v}$	C _p	specific heat capacity at constant pressure specific heat capacity at	J/kg ⋅ K	
		constant volume	J/kg⋅K	

	V			
Volume condition	$\Delta V = \frac{V_3}{V_2}$	ΔV	volume condition	
during combustion	- 2		during combustion	1
		V_3	cylinder-volume	
			above piston at the end of combustion	m^3
			end of combustion	m
Paul processes				
Real processes				
Pressure of	$p_k = p_{s1} \epsilon^n$	Dk	pressure of	
compression	5/0 (5) *	18.00	compression	Pa
		p_{s1}	pressure at start	
			of compression	Pa
		€	•	
			compression	1
		n	politrop index	1
0				
Compression temperature	$T_k = T_{s_1} \epsilon^{n-1}$	T _k	compression	
temperature		T .	temperature at	K
		/ s1	beginning of	
			compression	K
			, , , , , , , , , , , , , , , , , , ,	
Efficiency and fuel				
consumption				
Ideal thomas dimenia	n _ W ₀			
Ideal thermodynamic efficiency	$\eta_o = \frac{w_o}{a_*}$		ideal thermodynamic	
emciency	•		efficiency thermo work	1
			supplied heat	J
		41	supplied fleat	J
Indicated	$\eta_i = \frac{W_i}{a_t} = \frac{P_i}{\dot{a}_t} = \frac{P_i}{\dot{m}_B h_g} = \frac{1}{b_i h_g}$			
thermodynamic	a_1 a_2 a_3 a_4 a_5 a_6 a_6		indicated thermodynamic	
efficiency			efficiency	1
•			work developed in	*
			cylinder (indicated	
			work)	J
			supplied heat	J
			indicated effect	W
			supplied energy per time unit	
			fuel consumption	J kg/s
			upper fuel value	J/kg
			indicated specific	ung
			fuel consumption	kg/J
			y	
	$\eta_i = \eta_o \eta_g$		degree of	
			goodness	
			(inner efficiency)	1

Effective thermodynamic efficiency	$\eta_{e} = \frac{W_{e}}{a_{t}} = \frac{P_{e}}{\dot{a}_{t}} = \frac{P_{e}}{\dot{m}_{B}h_{g}} = \frac{1}{b_{e}h_{g}}$	W _e	effective thermodynamic efficiency work supplied to motor shaft/axis (axis work) shaft/axis effect effective specific fuel consumption	1 J W kg/J
	$\eta_{\rm e} = \eta_{\rm i} \eta_{\rm m}$	η_{m}	mechanic efficiency	1
Degree of goodness	$ \eta_{g} = \frac{w_{i}}{w_{o}} $		degree of goodness thermodynamic work	1 J
Mechanical efficiency of engine	$ \eta_{\rm m} = \frac{w_{\rm e}}{w_{\rm i}} = \frac{P_{\rm e}}{P_{\rm i}} $	η_{m}	mechanical efficiency of engine	1
Propeller shaft mechanical efficiency	$\eta_{a} = \frac{w_{p}}{w_{e}} = \frac{\rho_{p}}{\rho_{e}}$	W _p W _e	propeller shaft mechanical efficiency propeller work shaft work propeller effect	1 J J W
Fuel consumption	$b_i = \frac{\dot{m}_B}{\rho_i}$	bi	indicated specific fuel consumption	kg/J
	$b_{e} = \frac{\dot{m}_{B}}{\rho_{e}}$	be	effective specific fuel consumption	kg/J
Effect and mean pressu				
Stroke volume per cylinder (displacement per cylinder)	$V_{h} = \frac{\pi D^2}{4} S$		stroke volume per cylinder diameter of cylinder (bore)	m ³
		S	stroke	m m

Indicated effect of a two-stroke engine	$P_i = i W_i n_a = i V_h \rho_{mi} n$	P. indicated effect	W
two-stroke engine		i number of cylinders	1
		W _i indicated work	J
		n _a number of work	
		processes per	
		second and per	
		cylinder	s-1
		p _{mi} indicated mean	3
			-
		pressure	Pa
		n frequency of	
		rotation	s ⁻¹
		$n_a = n$ for a two-stroke	
		engine	
Indicated effect of a	$P_i = i W_i n_a = i V_h p_{mi} \frac{n}{2}$	$n_a = {}^{n}l_2$ for a four-stroke	
four-stroke engine	1 1 3 11 1111 2	engine	
•		engine	
Tariffe and a financial	w_i		
Indicated mean	$\rho_{mi} = \frac{w_i}{v_b}$	p _{mi} indicated mean	
pressure	h	pressure	Pa
		process	
	$p_{\text{mi}} = \frac{\text{area of } pV\text{-diagram in mm}^2}{1200 min min min min min min min min min min$	(scale factor of pressure shaft)	
	length of pV-diagram in mm	(course reactor of procedure critativ)	
Shaft effect of two-	$P_e = i W_e n_a = i V_h \rho_{me} n$	Pe shaft effect	W
stroke engine	0 0 0 11.1110	We shaft work	J
•		P _{me} effective mean	J
			-
		pressure	Pa
		$n_a = n$ for two-stroke engin	е
		•	
	$P_{e} = P_{i} \eta_{m}$	$\eta_{\rm m}$ mechanic efficiency	
	• 1 111	of engine	1
Shaft effect of four-	P = 1W = = 1V = "		
	$P_e = i W_e n_a = i V_h p_{me} \frac{n}{2}$	$n_a = {}^nI_2$ for four-stroke engi	ne
stroke engine	$P_{e} = P_{i} \eta_{m}$		
	. e - ' i '/m		

Equation for effective	$p_{\rm me} = \frac{\rho_{\rm i} h_{\rm g}}{\mu_{\rm m} \eta_{\rm i} \gamma_{\rm f}} \frac{\eta_{\rm m} \eta_{\rm i} \gamma_{\rm f}}{\eta_{\rm m} \eta_{\rm i} \gamma_{\rm f}}$	-	P _{me} effective mean	
mean pressure	(L/B), \lambda_t		pressure	Pa
			ρ density of dry air	100
			outside engine	kg/m ³
			h _g oil's heating value	J/kg
			(L/B), reaction equiva-	
			lent mixture of air	4000
			and fuel	kg/kg
			η_i indicated thermo	
			efficiency	1
			γ _f degree of air-filling	
			of cylinder	1
			λ ₁ air factor related to	
			air filling of cylinder	1
	$p_{\text{me}} = \eta_{\text{m}} p_{\text{mi}}$		p _{mi} indicated mean	
			pressure	Pa
	- Pe Pe			
	$T = \frac{P_e}{\omega} = \frac{P_e}{2\pi n}$			
T				
Torque moment		in a all more allows to a	T torque moment	Nm
			ω angle velocity	rad/s
Mean piston velocity	$c_{\rm ms} = 2 S n$		c _{ms} mean piston	m/s
	-ms ·		velocity	
			S length of stroke	m
			•	
COMBUSTION				
Theoretic air demand	$v_{Lr} = \frac{22.4}{0.21} \left(\frac{c}{12} + \frac{h}{4} + \frac{3}{3} \right)$		V _{Lr} theoretic need	Nm³ a
rneoretic air demand	Lr 0.21 12 4 3	2'	for air	kg fue
			ioi ali	ng ruo
			Nm ³ – normal cubic	
			meter - not SI-unit	
			c mass of carbon	kg
			h mass of hydrogen	kg
			s mass of sulfur	kg
	(1 /R) = 1 202 22.4 , c	, h , s ,	(L/B) _f theoretic need	kg air
	$(L/B)_r = 1.293 \cdot \frac{22.4}{0.21} \left(\frac{c}{12} \right)$	+ + + 32)	of air	kg fue
			or on	
				ko air
Real air usage	$L/B = \lambda (L/B)_r$		L/B real air usage	kg air
Real air usage	$L/B = \lambda (L/B)_r$		7.4	kg air
Real air usage	$L/B = \lambda \left(L/B \right)_{\rm f}$		L/B real air usage λ air factor related to air usage	kg air kg fue

Specific air usage	$I_{\mathbf{e}} = b_{\mathbf{e}} \lambda (L/B)_{\mathbf{r}}$	l _e b _e	specific air usage specific fuel usage	kg air/J kg/J
Engine's air usage	$\dot{m}_{L} = P_{e}I_{e} = P_{e}b_{e}\lambda (L/B)_{r}$		air usage of engine shaft effect	kg/s W
	$\dot{m}_{L} = \dot{m}_{B} \lambda (L/B)_{r}$	ḿв	fuel usage	kg/s
	$\dot{m}_{L} = \gamma_{L} i V_{h} \rho_{i} n_{a}$	24	degree of air usage	1
	$m_{\perp} = \gamma_{\perp} / V_{h} \rho_{i} n_{a}$	γL Vh	number of cylinders displacement per	1
			cylinder	m ³
		Pi na	air density outside number of work	kg/m ³
			processes per second	s ⁻¹
Exhaust gases	V 22.4 (c/12) · 100	Vcoz	volume % CO ₂	
Exilaust gases	$V_{\text{CO}_2} = \frac{22.4 \ (c/12) \cdot 100}{22.4 \ (c/12) + v_{\text{Lr}} (\lambda - 0.21)}$	V CO2	(efficiency CO ₂) in	
		С	dry exhaust mass of carbon	%
		C	mass of Carbon	kg
	$V_{O_2} = \frac{0.21 v_{L_r} (\lambda - 1) \cdot 100}{22.4 (c/12) + v_{L_r} (\lambda - 0.21)}$		W 1984	
	$22.4 (c/12) + v_{Lr} (\lambda - 0.21)$	V_{02}	volume % O ₂ (efficiency O ₂) in dry exhaust	%
	$V_{N_2} = \frac{0.79 v_{Lr} \lambda \cdot 100}{22.4 (c/12) + v_{Lr} (\lambda - 0.21)}$			
	v_2 22.4 (c/12) + v_{Lr} ($\lambda - 0.21$)			
		V_{N_2}	volume % N ₂ (efficiency N ₂) in	
			dry exhaust	%
Air factor	$\lambda = \frac{22.4 (c/12) (100 - V_{\text{CO}_2})}{V_{\text{CO}_2} V_{\text{Lr}}} + 0.21$	λ	air factor related to	
	V _{CO2} V _{Lr}		air usage	1
GAS CHANGING IN TWO-STROKE ENGINE	s			
Degree of air usage	$\gamma_{L} = \frac{m_{L}}{m_{e}}$	γL	degree of air usage	1
g. 55 57 an asage	mLt 21	m_{L}	quantity of air used	kg
		m _{Lt}	theoretic quantity of air filling	kg
		P	density of suctioned air	kg/m³
	$m_{1} = \rho_i V_h$	V_{h}	displacement	200
			(stroke volume)	m ³

Degree of air filling	$\gamma_{\rm f} = \frac{m_{\rm Lf}}{m_{\rm Lt}} = \gamma_{\rm L} \ (1 - \gamma_{\rm k})$	γι mu	degree of air filling quantity of air filled/ suctioned	1 kg
		γк	degree of short circuit	1
Degree of scavenging air	$\gamma_{R} = \frac{m_{Lf}}{(m_{Lf} + m_{R})}$	γR	degree of scavenging air	1
scaveriging an		m_{R}	quantity of residual gasses	kg
Air factor related to air filling	$\lambda_f = \lambda (1 - \gamma_k)$	λ_{f}	air factor related to air filling	1
to an immig		λ	air factor related to air usage	1
Degree of short circuit	$\gamma_{\mathbf{k}} = \frac{m_{\mathbf{L}\mathbf{k}}}{m_{\mathbf{L}}}$	γк	degree of short	1
		<i>m</i> _{LK}	loss owing to short circuit + expelling	kg
	$m_{L} = m_{Lf} + m_{Lk}$	<i>m</i> ∟	quantity of air usage	kg

ENGINE DYNAMICS

Piston acceleration in

top and bottom dead centers

Crank-operation

Connecting rod ratio	$\lambda = \frac{R}{L}$
Length of stroke	$s = R \left(1 - \cos \alpha + \frac{\lambda}{2} \sin^2 \alpha\right)$
Piston velocity	$c = R \omega \left(\sin \alpha + \frac{\lambda}{2} \sin 2\alpha \right)$
Piston acceleration	$a = R\omega^2 (\cos \alpha + \lambda \cos 2\alpha)$

 $a_{TD} = R\omega^2 (1 + \lambda)$

 $a_{\rm BD} = -R\omega^2 (1 - \lambda)$

connecting rod ratio crank radius length of connecting rod 1 R m m length of stroke m angle of crank rad piston velocity angle velocity of crank m/s rad/s m/s2 piston acceleration a_{TD} piston acceleration in top dead center m/s2

a_{BD} piston acceleration in bottom dead

center

m/s²

Oscillating force	$F_{\rm o} = (m_{\rm s} + m_{\rm vo}) a$	⁶ €		oscillating force mass of whole piston	N kg
		e l	m _{vo}	oscillating part of mass of connecting rod	kg
Gas force	$F_{g} = \frac{\pi \sigma^2}{4} \rho$	n F	Fg d p	gas force piston diameter difference of pressure on upper and lower side of	N m
	5-515		_	piston force	Pa N
Piston force	$F_p = F_g + F_o$	4	Pp	pistorriorce	
Normal force	$F_n = F_s \operatorname{tg} \beta$		F_n β	normal force angle of	N .
				connecting rod	rad
Connecting rod force	$F_{v} = \frac{F_{p}}{\cos \beta}$		F _v	connecting rod force	N
Tangential force	$F_t = F_v \sin(\alpha + \beta)$		F_{t}	tangential force	N
	$F_{t} = \frac{F_{p} \sin{(\alpha + \beta)}}{\cos{\beta}}$				
Work per revolution	$W_i = F_{tm} 2 \pi R$			work mean tangential	J
				force	N
Mean indicated torque	$T_i = F_{tm}R$		Ti	torque	N·m
Radial force	$F_d = F_v \cos{(\alpha + \beta)}$		F_d	radial force	N
Rotating force	$F_r = m_r R \omega^2$		Fr mr	rotating force mass of crank journals/pin + mass of counter- weights related to crank radius + rotating part of connecting rod	N
				mass m _{vr}	kg

Mass forces in a one-cylinder engine

Rotating mass forces	$F_{\rm r} = m_{\rm vr} R \omega^2 + m_{\rm t} R \omega^2 + 2 m_{\rm sk} R_{\rm t} \omega^2$	Fr	rotating mass	
			forces	N
		m _{vr}	rotating mass part	l
	11 - m. m m.		of connecting rod	kg
	11.7	R	crank radius	m
	11 15	ω_{m_t}	angle of velocity mass of the	rad/s
	~ "M	m _{sk}	crankshaft pin mass of the crank	kg
	J/\$#5-	R.	counterweight the radius of the	kg
	$F_r = m_r R \omega^2$		center of gravity	
	F,=M, N W		of the counterweight	m
		mr	mass of crankshaft/ journal pin + mass of counter-	
	R.		weights related to crank radius +	
	$m_r = m_{vr} + m_t + 2m_{sk} \frac{\kappa_t}{R}$		rotating part of	
			connecting rod	
			mass m _{vr}	kg
Oscillating mass forces	$F_0 = m_0 R \omega^2 (\cos \alpha + \lambda \cos 2\alpha)$	Fo	oscillating mass forces	N
		m.	total oscillating	
		*****	mass	kg
		α	angle of crank	rad
		λ	connecting rod ratio	1
	$m_{o} = m_{p} + m_{vo}$		mass of complete piston	kg
		m_{vo}	oscillating mass of	
			connecting rod	kg
	$F_{01} = m_0 R \omega^2 \cos \alpha$	F ₀₁	mass forces of first	120
	The state of the s		order	N
	$F_{02} = \lambda m_0 R \omega^2 \cos 2\alpha$	F ₀₂	mass forces of	
	0.	. 02	second order	N
				3.3.70

F_k counter weights' centrifugal force

m_k mass per counter weight R_k point of gravity

 m_r rotating mass m_o oscillating mass

radius

kg

m

kg

 $F_{k} = F_{r} + \frac{1}{2} F_{01 \text{maximum}}$

 $2m_k R_k \omega^2 = m_r R \omega^2 + \frac{1}{2} m_o R \omega^2$

Centrifugal force of counter weights

Two counter weights

Torque swings

Swing f	requency
---------	----------

$$f_{n1} = \frac{1}{2\pi} \sqrt{\frac{G I_p}{L} \cdot \frac{I_1 + I_2}{I_1 \cdot I_2}}$$

Plane pressure in bearings
$$\rho = \frac{\frac{\pi}{4} \sigma_v^2 \cdot \rho}{D_v L_{ve}}$$

m

tracks)

PROPULSION IN WATER

Effect needed

Propulsion effect (towing effect)

$$P_{\rm E} = F_{\rm T} v$$

Pushing power/force

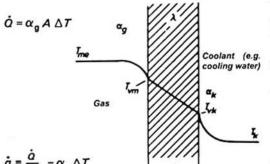
$$F_p = F_T + F_M$$

Propeller's delivered effect (pushing effect)

$$P_s = F_s v_r$$

current coefficient =
$$\frac{v - v_r}{v}$$

P _E F _T		W
5.5	resistance	N
v	ship velocity	m/s
F _p F _M		N
	resistance from propeller	N
Ps		w
$V_{\rm r}$	propeller's velocity in propulsion	
	direction related to	
	water	m/s
$v_{\rm r}$	relative velocity of	


Current coefficient 0.20 - 0.25

propeller

Propeller efficiency	$ \eta_{p} = \frac{\rho_{s}}{\rho_{p}} $		propeller efficiency effect supplied to propeller	1 W
Propulsion efficiency	$ \eta_{f} = \frac{P_{E}}{P_{p}} = \frac{P_{E}}{P_{s}} \frac{P_{s}}{P_{p}} = \eta_{sg} \eta_{p} $	η ₁ η ₅₉	propulsion efficiency shape of hull (degree of	1
	$ \eta_{sg} = \frac{P_E}{\rho_s} $		goodness of hull)	1
Shaft mechanical efficiency	$ \eta_{\mathbf{a}} = \frac{P_{\mathbf{p}}}{P_{\mathbf{e}}} $	η _a <i>P</i> _e	shaft mechanical efficiency shaft effect from engine	1 W
Ship's theoretical speed	$v_{t} = s n_{p}$	Vt S ηρ	ship's theoretical velocity propeller thread/ rise propeller rotating	m/s m
Slip	$slip = \frac{(v_t - v) \ 100}{v_t}$		frequency	5
	$P_{\theta} = P_{\theta}^{*} \left(\frac{n}{n^{*}}\right)^{3} = P_{\theta}^{*} \left(\frac{v}{v^{*}}\right)^{3}$		at normal operation	W s ⁻¹ s ⁻¹ m/s
	$P_{\bullet} = \Delta^{\frac{2}{3}} \frac{v^3}{A}$	Δ A	displacement admiralty constant	ton

HEAT TRANSFER AND HEAT LOAD

Heat flow

heat flow J/s = W

heat transfer $W/(m^2 \cdot K)$ coefficient area to which heat m^2 is transferred

ΔT temperature difference between gas and surface K material

Heat flux

$$\dot{q} = \frac{\dot{\alpha}}{A} = \alpha_g \, \Delta T$$

heat flux (density of heat flow)

Eichelberg's formula

$$\alpha_{\rm g} = 2.1 \sqrt{\rho T} \sqrt[3]{c_{\rm ms}}$$

heat transfer coefficient

kcal/m²h

Eichelberg's formula is based on the technical system.

absolute gas kp/cm² pressure gas temperature cms mean piston velocity m/s

One-dimensional transfer

$$\dot{q}_{\rm m} = \frac{\lambda}{\delta} \ (T_{\rm vm} - T_{\rm vk})$$

W/m² qm mean heat flux $W/(m^2 \cdot K)$ thermo conductivity material thickness

T_{vm} mean wall temperature on gas side Tvk mean wall

temperature on refrigerant side K

 $\dot{q}_{\rm m} = \alpha_{\rm k} \left(T_{\rm vk} - T_{\rm k} \right)$

ak heat transfer $W/(m^3 \cdot K)$ coefficient T_k refrigerant

temperature K

Heat transfer through wall

$$\dot{q}_{\rm m} = k \left(T_{\rm me} - T_{\rm k} \right)$$

heat transfer coefficient

 $W/(m^3 \cdot K)$

Tme mean effective gas temperature

K

Heat transfer coefficient

$$\frac{1}{k} = \frac{1}{\alpha_{gm}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{k}}$$

α_k heat transfer coefficient gassurface

 $W/(m^2 \cdot K)$

α_k heat transfer coefficient materialrefrigerant

 $W/(m^2 \cdot K)$

Any boiler scale shall be

added $\frac{\delta_{ks}}{\lambda_{ks}}$.

AUXILIARY SYSTEMS

Cooling water system

Necessary quantity of cooling water

$$\dot{v} = \frac{\sum r_k}{\Delta \tau_{\text{tot}} \ c \ \rho \ \eta_e}$$

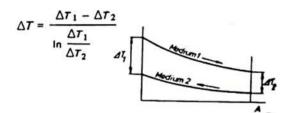
$$\dot{v} = \frac{2 r_{\rm k}}{\Delta \tau_{\rm tot} \ c \ \rho \ \eta_{\rm e}}$$

$$\dot{v} = \frac{\sum r_k \, \dot{m}_B \, h}{\Delta T_{\text{tot}} \, c \rho P_e}$$

$$\dot{V} = \dot{v} P_{e}$$

$$\Delta T_{\text{tot}}$$
 temperature difference K

1


$$\eta_{\rm e}$$
 effective thermo efficiency

$$\dot{m}_{\rm B}$$
 fuel consumption kg/s h calorific value J/kg

Freshwater coolers

1.1.		a	ow
П	?AI	- 11	DW.

$$\dot{Q} = r_{kf} \dot{m}_B h = r_{kf} h b_e P_e = r_{kf} \frac{P_e}{\eta_e}$$

ΔT	logarithmic mean
	temperature
	difference

$$\Delta T_1$$
 temperature difference K

$$\Delta T_2$$
 temperature difference K

Lubricating coolers

$$\dot{Q} = r_{ks} \dot{m}_B h = r_{ks} h b_e P_e = r_{ks} \frac{P_e}{\eta_e}$$

$$\dot{Q}$$
 heat flow J/s = W transferred heat quantity in lubri-

$$\rho = \frac{\Delta \rho \, \dot{v}}{\eta} = \frac{\Delta \rho \, \dot{v} \, \rho_e}{\eta}$$

 $\dot{Q} = k A \Delta T$

$$P$$
 effect needed W Δp increased pressure in pump Pa