MECHANICS

STATICS

Power moment	M = FI

power moment $N \cdot m$ force/power length of arm N m

$$\Sigma F_x = 0$$

uilibrium
$$\Sigma F_{y} = 0$$

$$\Sigma M = \Sigma(FI) = 0$$

Center of gravity

Arc of circle

$$x_0 = \frac{kr}{h} = \frac{r \sin \alpha}{\alpha}$$

distance chord

m m

radius b arc angle

m m rad

Arc of half circle

$$x_0 = \frac{2r}{\pi}$$

Area

Triangle

$$y_0 = \frac{h}{3}$$

distance height/altitude

m m

Trapezoid

$$y_0 = \frac{h}{3} \cdot \frac{a+2b}{a+b}$$

yo distance m h height/altitude a and b length m m

 $x_0 = \frac{2rk}{3b} = \frac{2r\sin\alpha}{3\alpha}$

distance

chord radius m m m

angle

rad

Half circle

Circle sector

$$x_0 = \frac{4r}{3\pi} = 0.424 r$$

distance

m

Segment

$$x_0 = \frac{k^3}{12A}$$

distance area

 $_{\rm m^2}^{\rm m}$

Any area

$$x_0 = \frac{A_1x_1 + A_2x_2 + \cdots + A_nx_n}{A_1 + A_2 + \cdots + A_n} = \frac{\Sigma(A_x)}{\Sigma A}$$

distance

m m²

area distances

$$\gamma_0 = \frac{A_1\gamma_1 + A_2\gamma_2 + \dots + A_n\gamma_n}{A_1 + A_2 + \dots + A_n} = \frac{\Sigma(A_\gamma)}{\Sigma A}$$

distance distances m m

Volumes

Pyramid and cone

$$y_0 = \frac{h}{4}$$

distance height/altitude

m m

(See also chapter on Mathematics)

Double gear exchange – Power/force gained

$$K_t = \frac{G}{F} = \frac{R_1}{r_1} \cdot \frac{R_2}{r_2} \cdot \frac{\iota}{r}$$

K	theoretical force	
	gained	1
G	gravity (cargo)	N
F	force	N
R1.	R2, r1, and r2 radii	
	of cogwheels	m
1	length of crank	m

Dividing cogs

$$t=\pi\,m=\frac{\pi d}{z}$$

$$d = \frac{tz}{\pi} = mz$$

Blocks and tackles

$$F = (G + \frac{Gfn}{100}) : n_1$$

lorce	14
gravity (cargo)	N
number of discs	1
friction in percent of	
gravity per disc	1
number of force-	
gaining discs	1
	gravity (cargo) number of discs friction in percent of gravity per disc number of force-

$$l = h n$$

$$K_p = \frac{G}{F}$$

$$F = \frac{G}{\alpha + \alpha^2 + \alpha^3 + \dots + \alpha^n}$$

$$F_{l} = \frac{G}{\frac{1}{\alpha} + (\frac{1}{\alpha})^{2} + (\frac{1}{\alpha})^{3} + \dots + (\frac{1}{\alpha})^{n}}$$

$$F_0 = \frac{G}{n}$$

$$\eta = \frac{F_0}{F} = \frac{\alpha + \alpha^2 + \alpha^3 + \cdots + \alpha^n}{n}$$

$$\eta = \frac{Gh}{FL} = \frac{G}{Fn}$$

$$\eta$$
 efficiency 1

N

Differential tackle

$$FR = \frac{G}{2} (R - r)$$

$$h=\pi n\;(R-r)$$

F	force	N
R	radius	m
r	radius	m

h height of lift m
n estimated rotation of the tackle 1

Efficiency multiplied by force when hoisting and by gravity (cargo) when lowering.

The lifting screw

$$F_0 = \frac{sG}{2\pi R}$$

$$F = \frac{s + 2\pi (\mu_r + \mu_1 r_1)}{2\pi R} G$$

 $K_{p} = \frac{G}{F} = \frac{2\pi R}{\epsilon + 2\pi \left(\mu r + \mu_{1} r_{1}\right)}$

 $\eta = \frac{F_0}{F} = \frac{Gs}{2\pi R F} = \frac{s}{s + 2\pi (\mu r + \mu_1 r_1)}$

 $K_{t} = \frac{G}{F_{0}} = \frac{2\pi R}{s}$

Fo force on crank

rise

radius

without friction

N

m

m

N

N

1

$$\mu$$
 friction coefficient 1 m

$$\eta$$
 efficiency 1

F force on crank N z number of teeth 1 x number of threads 1

F_T tooth pressure N R₁ radius of endless wheel m

$2\pi FR = F_{T}s + 2\pi rF$	- "

$$2\pi FR = \frac{Gr_1s}{R_1} + \frac{2\pi FGr_1\mu}{R_1}$$

mean radius of screw

m

$$n_1 = \frac{h}{2\pi c}$$

$$n = \frac{2\pi R_1 n_1}{s}$$

Inclined plane

$$F_N = G \cos \alpha$$

$$F_p = G \sin \alpha$$

Fp force down and

$$F_f = F_N \mu$$

$$F = F_f + F_D$$

parallel to the inclined plane

N

N

$$F = F_4 + F$$

to the inclined plane

 $\mu = \tan \alpha$

angle of rise

rad

The formula applies also when $F_p = F$

$$K_{t} = \frac{G}{F_{p}} = \frac{l}{h}$$

$$K_p = \frac{G}{F}$$

h height/altitude of inclined plane

DYNAMICS

Constant speed/velocity

Rectilinear motion
$$d = vt$$

Circular movement

$$\omega = \frac{v}{r} = 2\pi n$$

 $v = \pi dn = 2\pi rn$

$$\varphi = \omega t$$

$$a_n = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2} = \omega^2 r$$

$$n = \frac{1}{T}$$

d	distance	m
V	velocity	m/s
t	time	S

$$\omega$$
 rotation of angle s⁻¹ radius m

$$\varphi$$
 distance of angle rad

$$=\frac{1}{T}$$

Constant acceleration

Rectilinear motion
$$v_f = v_i + at$$

$$v_f$$
 final velocity m/s v_i initial velocity m/s a acceleration m/s² t time s

$$d = \frac{v_i + v_i}{2} \ t = v_i \ t + \frac{1}{2} a t^2$$

$$v_1^2 - v_1^2 = 2ad$$

$$v_1 = v_0 + Agt$$

$$d = \frac{v_1 + v_1}{2} t = v_1 t + \frac{1}{2} Ag \cdot t^2$$

$${v_1}^2 - {v_1}^2 = 2Agh$$

m

m/s

Projectile Motion

$$v_x = v_0 \cos \alpha$$

- velocity in x
 - direction
- m/s

m/s

- angle
- rad

 $v_y = v_0 \sin \alpha - Ag \cdot t$

 $s_x = v_0 t \cos \alpha$

- distance in xdirection
- m

 $s_y = v_0 t \sin \alpha - \frac{Ag \cdot t^2}{2}$

- distance in ydirection
- m

Circular movement

$$\omega_i = \omega_i + \alpha t$$

- velocity of angle (end)
- rad/s
- ω_i velocity of angle (start)
- rad/s
- rad/s2 angle acceleration
- centripetal acceleration
- m/s²

$$\alpha = \frac{\omega_t - \omega_t}{t}$$

$$\varphi = \frac{\omega_i + \omega_t}{2} t$$

- distance of angle

- $\varphi = \omega_i t + \frac{\alpha t^2}{2} = \frac{\omega_t^2 \omega_i^2}{2\alpha}$
- $a_t = \alpha r$

- rad

- tangential acceleration radius
- m/s2 m

Weight and force

$$W = mAg$$

- W weight m mass
- N kg
- Ag acceleration due to gravity
- m/s2

F = ma

- F force

Work	W = Fd	W F d	work force distance	J N m
Energy	$E_p = mAgh$	E _p	potential energy (position energy) height/altitude	J m
	E = Fd	d	distance	m
	$E_{\rm k} = \frac{mv^2}{2}$	E _k	kinetic energy (energy of motion) velocity	J m/s
Effect	$P = \frac{w}{t} = \frac{Fd}{t} = Fv = T\omega$	P W t F d v T ω	effect work time force distance velocity torsion moment velocity of angle	W J s N m m/s N·m rad/s
Efficiency	$\eta = \frac{\rho_s}{\rho_t}$	η Pa Pt	efficiency effect delivered (useful) effect supplied	1 W
Rotation around a fixed axis	$T = I \alpha$	T I	torsion moment inertia moment of mass angle acceleration	N·m kgm² rad/s²
	$W = T \varphi$	<i>W</i> φ	work angle of torsion	J rad
	$E_{k} = \frac{I \omega^{2}}{2}$	E _k ω	kinetic energy angle of velocity	J rad/s

Projectile Motion

$$v_x = v_0 \cos \alpha$$

- vx velocity in x
 - direction
- m/s
- angle
- rad

m/s

 $v_y = v_0 \sin \alpha - Ag \cdot t'$

- $s_x = v_0 t \cos \alpha$
- $s_y = v_0 t \sin \alpha \frac{Ag \cdot t^2}{2}$

- distance in xdirection
- m
- distance in ydirection

m

Circular movement

$$\omega_i = \omega_i + \alpha t$$

- velocity of angle (end)
 - rad/s
- ω_i velocity of angle (start)

centripetal acceleration rad/s

rad/s2

- angle acceleration
 - m/s2

- $\alpha = \frac{\omega_t \omega_i}{t}$
- $\varphi=\frac{\omega_i+\omega_t}{2}t$

- distance of angle

rad

- $\varphi = \omega_i t + \frac{\alpha t^2}{2} = \frac{{\omega_t}^2 {\omega_i}^2}{2\alpha}$
- $a_t = \alpha r$

- tangential acceleration radius
 - m/s2 m

Weight and force

$$W = mAg$$

- W weight N mass kg
- Ag acceleration due to gravity
 - m/s²

F = ma

- F force
- m/s2

Work	W = Fd	W F d	work force distance	J N m
Energy	$E_{\rm p} = mAgh$	E _p	potential energy (position energy) height/altitude	J m
	E = Fd	d	distance	m
	$E_{\rm k} = \frac{mv^2}{2}$	E _k	kinetic energy (energy of motion) velocity	J m/s
Effect	$P = \frac{w}{t} = \frac{Fd}{t} = Fv = T\omega$	P t F d v T ω	effect work time force distance velocity torsion moment velocity of angle	W J s N m m/s N·m rad/s
Efficiency	$\eta = \frac{\rho_a}{\rho_t}$	η Pa Pt	efficiency effect delivered (useful) effect supplied	1 W
Rotation around a fixed axis	$T = I \alpha$	T I a	torsion moment inertia moment of mass angle acceleration	N·m kgm² rad/s²
	$W = T \varphi$	W φ	work angle of torsion	J rad
	$E_{k} = \frac{I \omega^{2}}{2}$	Eκ	kinetic energy angle of velocity	J rad/s

Centri	petal	force
Contin	Potal	10100

$$F_n = m a_n$$

Tangential force

$$F_t = m a_t$$

F_{n}	centripetal force
222	mace

acceleration

tangential aceleration

m/s2

Harmonic swings

Mathematic pendulum (small swings)

$$T=2\pi\sqrt{\frac{l}{Ag}}$$

gravity

$$T = 2\pi \sqrt{\frac{I}{mge}}$$

$$T = 2\pi \sqrt{\frac{m}{c}}$$

of gravity
$$G_c$$
 center of gravity
 c constant

$$T = 2\pi \sqrt{\frac{l\cos\alpha}{Aa}}$$

$$\alpha$$
 angle

Inertia Moment of Mass

$$I_0 = \frac{mr^2}{2}$$

$$I_{\rm o}$$
 inertia moment kgm 2 m mass kg r radius m

$$I_0 = \frac{m(R^2 + r^2)}{2}$$

$$I_0 = m r_m^2$$

between the radii is small)

m

Rectangular thin plate

$$I_{X} = \frac{mh^2}{12}$$

kgm²

$$I_{y} = \frac{mb^2}{12}$$

kgm²

$$I_0 = \frac{2}{5}mr^2$$

kgm²

Straight bar

$$I_0 = \frac{ml^2}{12}$$

m

Steiner's formula

$$I_A = I_0 + me^2$$

A axis distance between kgm²

the axises

m

Centric impact

Inelastic impact	$m_1v_1 + m_2v_2 = (m_1 + m_2)u$	m ₁ m ₂	mass of body no. 1 mass of body no. 2	kg kg
		V ₁	velocity before impact no. 1 velocity before	m/s
		u	impact no. 2 joint velocity after	m/s
		U	impacts	m/s
Elastic impact	$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$	u ₁	velocity after impact	
		u_2	no. 1 velocity after impact	m/s
		-	no. 2	m/s
	$u_1 - u_2 = c(v_2 - v_1)$	C	coefficient of impact	1
		inel	stic impact (k = 1), lastic impact (k = 0), I partly elastic impact k<1)	
Loss of energy at impact	$E = \frac{1}{2} [m_1 (v_1^2 - u_1^2) + m_2 (v_2^2 - u_2^2)]$	E	loss of energy	J

SOLIDITY/COMPACTNESS/ELASTICITY

Centric stress and pressure

$$\sigma_s = \frac{F}{A}$$

$$\sigma_{s}$$
 tension of stress Pa
F force of stress N
A area m²

$$\sigma_{\mathsf{t}} = \frac{F}{A}$$

Hooke's law

$$\epsilon = \frac{\Delta t}{t} = \frac{\sigma}{E}$$

$$\Delta I = \frac{\sigma I}{E} = \frac{FI}{EA}$$

area

negative sign means that the spring force is directed oppositely to the stretching compression

Cutting

$$\tau = \frac{F}{A}$$

T	cutting tension	Pa
F	force	N
A	area	m²

Rivets and screw connections

$$\sigma_h = \frac{F}{nds} \qquad \frac{F}{2} \qquad \frac{S_1}{S_2}$$

σ_h	tension of hole	
	pressure	Pa
F	force	N
d	diameter	m
S	thickness of plate	m
n	number of areas	1

Cutting tension

$$\tau = \frac{F}{n \frac{\pi \sigma^2}{4}}$$

au cutting tension in rivet

Pa

m⁴

Inertia and resistan moments when bending

Steiner's formula

$$I_{x} = I_{0} + Ay_{0}^{2}$$

 I_{x} inertia moment of area on x-axis

Io inertia moment of area on axis of

gravity A area Y_o distance

 m^4 m^2 m

Table

Inertia Moment	Resistance moment	Edge of the cut
$I_{X} = \frac{bh^3}{12}$ $I_{Y} = \frac{hb^3}{12}$	$W_X = \frac{bh^2}{6}$ $W_Y = \frac{hb^2}{6}$	1 · ·
$I_{\times} = I_{y} = \frac{\pi \sigma^{4}}{64}$	$W_x = W_y = \frac{\pi a^3}{32}$	
$I_x = I_y = \frac{\pi}{64} (D^4 - d^4)$	$W_x = W_y = \frac{\pi}{32} \cdot \frac{D^4 - d^4}{D}$	
$I_{X} = \frac{\pi a b^{3}}{4}$ $I_{Y} = \frac{\pi b a^{3}}{4}$	$W_X = \frac{\pi a b^2}{4}$ $W_Y = \frac{\pi b a^2}{4}$	2 <i>b</i> 2 <i>a</i> 2 <i>a</i>

Table continued

Inertia Moment	Resistance moment	Edge of the cut	
		B B	
$I_{\rm X} = \frac{BH^3 - bh^3}{12}$	$W_X = \frac{BH^3 - bh^3}{6H}$	- b x h H	
		H hx	
		$\begin{array}{c c} \frac{b}{2} & B & \frac{b}{2} \\ \end{array}$	
$I_{X} = \frac{BH^3 + bh^3}{12}$	$W_x = \frac{BH^3 + bh^3}{6H}$	H h-x	
		H N P -x	

Bending

- σ_b tension of bending Pa M_b moment of bending N · m W moment of resistance
 - moment of resistance when bending m³
- I moment of inertia m⁴
 Y distance from
 neutral axis to the
 point of the edge of
 the cut where the
 tension is sought m

Index s means stress, p means pressure

Torsion

Tension of torsion

$$\tau_{\rm V} = \frac{r}{W_{\rm p}}$$

 $W_p = \frac{I_p}{r}$

- tension of torsion Pa
- moment of torsion (torsion moment) N·m
 - polar resistance moment m³
- I_p polar inertia moment m⁴
 r radius m

Table

Polar inertia moment	Polar resistance moment	Edge of cut
$I_{\rm p} = \frac{\pi d^4}{32}$	$W_{\rm p} = \frac{\pi \sigma^3}{16}$	
$I_{\rm p} = \frac{\pi}{32} (D^4 - d^4)$	$W_{\rm p} = \frac{\pi}{16} \left(\frac{D^4 - \sigma^4}{D} \right)$	

Torsion deformation
Connection between effect, rotation figure, and moment of torsion
Cracking/bending Radius of inertia
Slenderness ratio
Euler's formula

$$\alpha = \frac{Tl}{W_{p}Gr} = \frac{Tl}{GI_{p}}$$

$$lpha$$
 angle of torsion rad l length of axis m G cutting module Pa

$$T = \frac{60 P}{2\pi n} \approx 9,55 \frac{P}{n_1}$$

$$T = \frac{P}{2\pi n} \approx 0,159 \frac{P}{n}$$

$$T = \frac{P}{\omega}$$

 $i = \sqrt{\frac{I_0}{A}}$

$$\omega$$
 velocity of angle rad/s

/bending

Slenderness ratio
$$\lambda = \frac{Lf}{I}$$

$$F_{K} = \frac{\pi^2 \, E \, I_0}{L_f^2}$$

 $\sigma_{K} = \frac{F_{K}}{A}$

L,=0,71

Allowed bending tension

σ_k allowed cracking/

bending tension bending safety

1.

Pa

Allowed load

allowed load

factor

N

Tetmajer's formula

 $F_K = \sigma_K A$

F_K bending/cracking

force N

σ_k bending firmness

A area, cross cut

Pa m²

Connection between slen	demess an	d bending firmness relate	ed to Tetmajer
Material	E N/mm²	σ _k N/mm²	Slenderness
Wood (pine and spruce)	1 · 103	29 – 0,19 λ	λ < 100
Cast iron	100 · 10 ³	$760 - 11.8 + 0.052 \lambda^2$	λ < 80
Steel (mild)	210 · 10 ³	304 – 1,12 λ	λ < 105
Steel (hard)	210 · 103	328 – 0,608 λ	λ < 90

Pressurized containers

Thin plated cylindrical container

thickness of plates (walls)

inner high pressure Pa

inner diameter m

tension of stress

Pa

Arched bottoms

thickness of plates (walls) m

outer diameter

Prerequisites for the formula, $H = 0.2 D, R \ge D, r = 0.1 D,$ length of the cylindrical part of the bottom > 4s