STEAM

Enthalpy

$$h_{\text{oh}} = h'' + c_{\text{oh}} \Delta T$$

Specific heat capacity
$$c_{oh} =$$
 for superheated steam

Steam density
$$\rho = \frac{1}{2}$$

$$v_x = v' (1 - x) + v'' x$$

h_{x}	specific enthalpy	
	for wet steam	J/kg
h"	specific enthalpy for	
	dry saturated steam	J/kg
r	evaporation heat	J/ka

humidity

$$\Delta h_{
m oh}$$
 enthalpy increase J/kg $\Delta T_{
m oh}$ temperature increase K

Vx	specific volume of	
	wet steam	m ³ /kg
V	water volume	m ³ /kg
X	dryness	1
v"	steam volume	m ³ /kg

Efficiency

Boiler efficiency

$$\eta_{\mathsf{k}} = \frac{\dot{m}_1 h_1 + \dot{m}_2 h_2 + \dot{m}_5 h_5 - \dot{m}_3 h_3 - \dot{m}_4 h_4}{\dot{m}_{\mathsf{B}} \, h_{\mathsf{g}}}$$

$$\frac{\eta k}{m_1}$$
 boiler efficiency 1 flow of superheated steam kg/s

J/kg

J/kg

J/kg

kg/s

J/kg

J/kg

J/kg

J/kg

J/kg

W

steam J/kg
$$\dot{m}_3$$
 flow of feeder water kg/s enthalpy of feeder

$$\dot{m}_4$$
 flow of reheated steam kg/s

$$\eta_{i} = \frac{H_{i}}{H_{A}} = \frac{h_{oh} - h_{2}}{h_{oh} - h_{1}}$$

$$\eta_{\mathsf{m}} = \frac{P_{\mathsf{S}}}{P_{\mathsf{I}}}$$

Thermo efficiency of turbine and condenser (without drain off and pre-heating	$\eta_{\rm tp} = \frac{h_{\rm oh} - h_2}{h_{\rm oh} - h_{\rm k}}$	 η_{tp} thermo efficiency of the process 1 h₂ enthalpy at leaving turbine J/kg h_k enthalpy of condensate J/kg
Thermo efficiency of plant (without drain off and pre-heating)	$\eta_{ta} = \frac{\dot{m}_{D} (h_{oh} - h_{2})}{\dot{m}_{B} h_{g}} = \eta_{tp} \eta_{k}$	$ \eta_{\text{ta}} $ thermo efficiency of the plant 1 m_{D} steam production kg/s η_{k} boiler efficiency 1
Flow in narrow pipes	$c_0 = \sqrt{2(h_1 - h_2) + c^{2}}$ $c_0 = 44.72 \sqrt{(h_1 - h_2)}$	co theoretic flow velocity m/s c velocity before "narrow pipe" m/s h1 specific enthalpy (before) J/kg h2 specific enthalpy (after) J/kg h1 and h2 are in kJ/kg
	$c_1 = c_0 \phi$	c_1 real flow velocity m/s ϕ velocity factor 1
Critical pressure	$P_{c} = 0.577 p_{1}$	p _c critical pressure Pa p ₁ pressure before "narrow pipe" Pa
	$p_{c} = 0.546 p_{1}$	0.577 factor for saturated steam 0.546 factor for superheated steam
Steam flow	$\dot{m}_{\rm D} = \frac{A_{\rm c} c_{\rm k}}{v}$	\dot{m}_D flow of steam kg/s A_c critical cross section (area) m² c_k critical velocity m/s v specific volume m³/kg

WORK OF STEAM (STEAM ENERGY)

Turbine without loss

$$W = \frac{1}{2} mc^2$$

work J
m mass kg
c velocity m/s

$$W_{\rm n} = \frac{1}{2} \, m \, \left(\, c_{\rm o}^2 - c_{\rm 1}^2 \, \right)$$

 $W_{\rm n}$ loss at narrow Pipe J co theoretic velocity m/s real velocity m/s

$$W_v = \frac{1}{2} m \left(\omega_1^2 - \omega_2^2 \right)$$

 W_{v} blade/vane loss J ω_{1} relative in-velocity of steam m/s

 ω_2 relative out-velocity of steam m/s

$$W_o = \frac{1}{2} m c_2^2$$

W_σ discharge flow (outward flow loss) c₂ velocity from

blades (vanes)

m/s

Real turbine

$$W_e = W - W_n - W_u - W_\sigma$$

We real work

.1

Trigonometric calculations of velocities

$$\omega_1^2 = c_1^2 + u^2 - 2c_1u \cos \alpha_1$$

 $W_0 = \frac{1}{2} m \left[c_0^2 - \left(c_0^2 - c_1^2 \right) - \left(\omega_1^2 - \omega_2^2 \right) - c_2^2 \right]$

ω₁ relative in-velocity of steam
 c₁ velocity into narrow pipes

m/s

m/s

m/s

rad

u rotation velocity of vanes
 α₁ angle of "narrow

pipe"

ow rad

$$\frac{\sin\delta_1}{u} = \frac{\sin\alpha_1}{\omega_1}$$

$$L\beta_1 = L\alpha_1 + L\delta_1$$

 β_1 in-angle of vanes

	$c_2^2 - \omega_2^2 + u^2 - 2\omega_2 u \cos \beta_2$	C ₂	absolute velocity outward from vanes	
		ω_2	relative out-velocity of steam	
		β_2	out-angle of vanes	
	$\frac{\sin\delta_2}{u} = \frac{\sin\beta_2}{c_2}$			
	$L\alpha_2 = L\delta_2 + L\beta_2$	α_2	out-angle of	
	-		steam-jet	
	$\Delta c = c_1 \cos \alpha_1 + \omega_2 \cos \beta_2 - u$	Δc	change of velocity	
	$\Delta c = \omega_1 \cos \beta_1 + \omega_2 \cos \beta_2$			
		_		
Effect	$P = \dot{m}_0 u \Delta c$	P mo	effect steam flow	
Degree of reaction	$\rho = \frac{(\omega_2^2 - \omega_1^2)}{(c_1^2 - c_2^2) + (\omega_2^2 - \omega_1^2)}$	ρ	degree of reaction	
Dogico or readion	$(c_1^2 - c_2^2) + (\omega_2^2 - \omega_1^2)$			
Twisted blades/vanes	$\delta = \beta_1' - \beta_1$	δ	angular twist	
		β'1	in-angle of steam at end of vanes	
		β_1	in-angle of steam	
			at root of vanes	
	$t_0 \beta_1 = \frac{\gamma}{x - u_1}$	U ₁	peripheral velocity	
	x-u ₁		at root	
	$t_g \beta_1' = \frac{y}{x - \mu_2}$	U ₂	peripheral velocity	
	2		at end	
	×	ω_1	relative-velocity of	
			ctoom of uppe root	

m/s m/s rad

rad

m/s

W kg/s

1

rad

m/s

m/s

m/s

m/s

m/s

HEAT TRANSFER IN BOILERS

Heat	COL	duc	tion

$$P = \frac{\lambda}{\delta} A \left(T_1 - T_2 \right)$$

P	effect	W
λ	thermal conductivity	W/m·K
δ	thickness	
	of material	m_
A	area	m ²
T1-	-T ₂ temperature	
	difference	K

m

$$P = \alpha A \left(T_1 - T_2 \right)$$

$$P$$
 effect W
α heat transfer coefficient W/m² · K

Simultaneous conduction and convection

$$P = k A (T_1 - T_2) \qquad \frac{t_1}{\alpha_1}$$

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$$

P	effect	w
k	heat transfer (through) coefficient	W/m² · K
α_1	heat transition coefficient gas – wall/material	W/m²
α_2	heat transition coefficient water – wall/	
	material	W/m ²
λ	thermal conductivity	W/m·K

δ thickness of material